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This CEN and CENELEC Workshop Agreement is an agreement, developed and approved by an open 
independent workshop structure within the framework of the CEN-CENELEC system. 

This CEN and CENELEC Workshop Agreement reflects the agreement of the registered participants 
responsible for its content, who decided to develop this document in accordance with the specific rules 
and practices available in CEN-CENELEC for the development and approval of CEN/CENELEC Workshop 
Agreements. 

This CEN and CENELEC Workshop Agreement can in no way be held as being a European Standard (EN) 
developed by CEN and CENELEC, as it does not represent the wider level of consensus and transparency 
required for a European Standard (EN). Furthermore, it is not intended to support legislative 
requirements or to meet market needs where significant health and safety issues are to be addressed. For 
this reason, CEN and CENELEC cannot be held accountable for the technical content of this CEN and 
CENELEC Workshop Agreement, including in all cases of claims of compliance or conflict with standards 
or legislation. 

The Workshop parties who drafted and approved this CEN and CENELEC Workshop Agreement, the 
names of which are indicated in the Foreword of this document, intend to offer market players a flexible 
and timely tool for achieving a technical agreement where there is no prevailing desire or support for a 
European Standard (EN) to be developed. 

The copyright of this document is owned by CEN and CENELEC, and copy of it is publicly available as a 
reference document from the national standards bodies of the following countries: Austria, Belgium, 
Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 
Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, 
Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey 
and the United Kingdom. 
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Attention is drawn to the possibility that some elements of this document may be subject to patent rights. 
CEN-CENELEC policy on patent rights is described in CEN-CENELEC Guide 8 “Guidelines for 
Implementation of the Common IPR Policy on Patent”. CEN shall not be held responsible for identifying 
any or all such patent rights. 

Although the Workshop parties have made every effort to ensure the reliability and accuracy of technical 
and nontechnical descriptions, the Workshop is not able to guarantee, explicitly or implicitly, the 
correctness of this document. Anyone who applies this CEN Workshop Agreement shall be aware that 
neither the Workshop, nor CEN, can be held liable for damages or losses of any kind whatsoever. The use 
of this CEN Workshop Agreement does not relieve users of their responsibility for their own actions, and 
they apply this document at their own risk. The CEN Workshop Agreement should not be construed as 
legal advice authoritatively endorsed by CEN/CENELEC. 
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Introduction 

Human-Robot Collaboration (HRC) is expected to be a core element of future factories. Combining the 
repeatability and tirelessness of robots with humans’ versatility and critical thinking skills often boosts 
flexibility and productivity of industrial processes. However, the design of effective methodologies to 
steer the deployment of this new paradigm in real production environments is an open challenge for both 
researchers and companies [1]. Work organization and technical solutions for Cyber-Physical Systems 
(CPS) are supposed to evolve between two extreme alternatives: (i) the techno-centric scenario and; (ii) 
the anthropo-centric scenario [2]. In the techno-centric scenario, the technological aspects dominate the 
organization of the work. In contrast, in the anthropo-centric scenario, human workers control the work, 
and technology helps them make decisions. 

Existing approaches to CPS (and, among them, HRC) oscillate between these two extremes. However, 
human factors have gained more attention in the design of novel methodologies for personalized 
production dynamics based on the operators’ preferences, technical skills, and health-related issues. 

Regarding HRC, human factors have been considered at different levels [3]. For example, optimization of 
human factors has been embedded into a task scheduler [4]; task allocation has been exploited to reduce 
the workload of human workers [5, 6]; task synergy between human-robot tasks were optimized to 
reduce the cycle time [7]; human-aware motion planners demonstrated to be preferable by human users 
[8]. The works mentioned above mainly focus on the planning aspects of HRC. However, they disregard 
the complex effect of human-robot communication on the user experience. A stuttering human-system 
communication is often a major bottleneck to a fruitful collaborative process. For this reason, the 
communication between the human operator and the system is an object of intense study. In this regard, 
Augmented Reality (AR) is a striking tool able to overlay instructions and knowledge from CPSs to the 
physical operator’s view [9]. 

Driven by this consideration, this CWA aims to provide an all-around approach to HRC, where robots and 
operators collaborate at different cognitive and physical levels. A key objective is to make implicit and 
explicit communications between robots and humans smooth and fruitful. Explicit communications 
leverage multi-modal technologies and, in particular, Augmented Reality tools. Implicit communications 
require the robotic system to reason on the operator’s intentions and act consequently. Therefore, task 
representation and planning are fundamental to provide the robot with the necessary autonomy and 
suitable initiative. 

This document presents the design methodology and deployment actions needed to provide a user-aware 
approach to HRC that enhances the flexibility of HRC systems. In addition, human-aware paradigms 
usually consider a one-fits-all solution, considering the human an anonymous agent. Here, we go beyond 
this concept and propose a user-centric methodology to shape the robots’ behavior based on the specific 
characteristics of a single user (e.g., age, skills, experience) and preferences (e.g., left-handed vs. right-
handed) [10], i.e., implementing personalized robot behavior that can better serve the human operator 
and, potentially, increase the technology perception and acceptance. Therefore, we propose the 
integration of planning, perception, and communication into a unified technological framework. 

An AI-based Knowledge Representation & Reasoning module encapsulates a user model representing 
features of human workers that are relevant with respect to production needs (e.g., match users’ skills to 
the requirements of production tasks). Combined AI-based task & motion planning modules reason on 
this knowledge to coordinate human and robot agents taking into account known skills and features of 
the worker, while pursuing an optimization perspective. Furthermore, an AR-based Human-System 
Interaction Module realizes advanced interaction mechanisms to contextualize communication to and 
from the worker to facilitate explicit human-robot communications and collaboration. 
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Considering the common challenges due to human-robot collaboration (HRC) for various application 
domains, the objective of this CWA is to provide a unified transversal framework consisting of the 
integration of planning, perception, and communication in human-robot collaboration (HRC) systems, by 
using a transversal approach based on standards and on well-established best practices. It presents the 
design methodology and deployment actions to provide a user-aware approach to HRC that enhances the 
flexibility of HRC systems. This is a user-centric methodology to shape the robot behavior based on a 
single user's specific characteristics (e.g., age, skills, experience) and preferences (e.g., left-handed vs. 
right-handed), implementing personalized robot behavior that can better serve the human operator and 
potentially increase the perception and acceptance of the technology. The guideline is applicable to 
different robot categories and use scenarios. 

This document does not apply to the following devices, systems, and applications: autonomous vehicles 
for the transportation of persons, drones, rescue robots (including ground, marine and aerial vehicles), 
surgical robots in relation to the body of the patient, passive wearable devices, external limb prostheses. 

This CWA has been promoted by the SHAREWORK project (‘Safe and effective human-robot cooperation 
towards a better competitiveness on current automation lack manufacturing processes’). It is 4-year (2018 
– 2022) project funded by the European Union’s Horizon 2020 Framework Programme for Research and 
Innovation under Grant Agreement No 820807. It brings together fifteen partners from 6 different 
European countries (Spain, Germany, France, Luxembourg, Italy, and Greece). 

1 Scope 

This CEN Workshop Agreement (CWA) defines a technical/methodological framework for human-robot 
collaboration (HRC) systems that integrates planning, perception, and communication. Specifically, it 
provides guidelines for the design methodology and deployment actions to provide a user-aware 
approach to HRC cell that increases the adaptability and flexibility of HRC systems. This is a user-centric 
methodology to shape robot behavior based on a single user's specific characteristics (e.g., age, skills, 
experience) and preferences (e.g., left-handed versus right-handed), implementing personalized robot 
behavior that can better serve the human operator and increase the perception and acceptance of the 
technology. 

This CWA will not define requirements related to safety aspects. 

Furthermore, any consumer or user of CWA framework, architecture, and component source code should 
do their own formal integrated risk assessment and EU Machine Safety Directive compliance. Users 
should also be responsible for integrating and testing any CWA solution architecture, network latency, 
security, and open-source software code to ensure that it meets the specific application requirements of 
the users, and that any modifications made are the responsibility of the system, integrator, etc.. 

This document is informative and is not aimed at substituting or simplifying production procedures 
required by standards. The objectives of this document are the following: 

— Define the design methodology and deployment actions needed to provide a user-aware approach to 
HRC that enhances the flexibility of HRC systems. 

— Present the user models and the knowledge-based formalism to represent users and production 
information. 

— Explain how the framework embeds user-awareness, with a particular focus on the planning and 
communication modules. 

— Present an example of the integration of the framework into a manufacturing scenario. 
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2 Normative references 

There are no normative references in this document. 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO/TS 15066:2016 apply. 

ISO and IEC maintain terminological databases for use in standardization at the following addresses: 

— ISO Online browsing platform: available at https://www.iso.org/obp 

— IEC Electropedia: available at https://www.electropedia.org/ 

4 HRC system design methodology 

This document describes an effective control system for anthropocentric HRC in fence-less environments. 
It follows a HRC architecture which is modular, distributed, service-oriented architecture (SoA) that 
defines a set of fifteen different software and hardware modules designed as stand-alone, interacting 
components communicating through well-defined interfaces. The architecture is fully interoperable and 
supports various module configurations that can be customized according to industrial needs. The HRC 
architecture includes modules that understand the environment and human actions through knowledge 
and sensors, predict future state conditions, implement smart data processing, provide augmented reality 
and gesture and speech recognition technology. 

 

Figure 1 — Overview of the HRC reference architecture (Safety considerations are out of the 
scope of this document) 

https://www.iso.org/obp/ui
https://www.electropedia.org/
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4.1 General Architecture and Module Overview 

Figure 1 shows a high-level overview of the HRC reference architecture, depicting the set of different 
modules and the high-level flow of information among them. The picture highlights the interconnection 
of Workspace Cognition, Planning, and human-robot communication composing the backbone of the 
architecture. Notwithstanding the modularity of the proposed approach, the core modules are combined 
into a user-centric framework oriented to user preferences and human factors at all levels (e.g., process 
representation, robot motion, human communication). Not only the single modules are user-centric per 
se, but they are also connected in such a way that the output of each module contains helpful information 
to enhance the user-awareness of other modules. It is the case, for example, of the trajectories planned 
by the Action&Motion Planner, which are visualized by the Human-System Communication module, or 
the user profiles stored in the Knowledge Base, which instantiates different communication interfaces 
based on the users’ preferences. 

This section focuses on how each of the main modules support user-awareness within the proposed 
framework: 

— The Knowledge Base Module stores a formal representation of the status of the production 
environment based on the ontology for human-robot collaboration. This module aggregates and 
elaborate information gathered from other modules to infer contextualized knowledge concerning 
for example situations/states of a worker, of the environment, of a production process being 
executed. 

— The Task Planning Module coordinates the worker and the robot to cooperatively conduct 
production processes. This module synthesizes a flexible temporal schedule of the tasks the worker 
and the robot should perform. 

— The Action&Motion Planning Module receives a task from the Task Planning Module and finds a 
sequence of feasible movements to execute it. It comprises an Action Decomposition layer that 
converts a high-level task (e.g., pick an object, screw a bolt) into a sequence of motion planning 
problems. Then, it uses a motion planning algorithm to solve each problem and returns a sequence 
of trajectories that executes the high-level task. To consider the user, the Action&Motion Planning 
Module runs online; that is, all trajectories are calculated on the fly, just before their execution. To do 
so, it exploits human tracking data, usually acquired through a vision system. This is necessary for 
two reasons: first, avoiding collisions and interference with the user (who is moving in the cell); 
second, adapting to changes in the environment (e.g., the user may move objects and tools during the 
work). 

— The Human-System Interaction Module provides a bidirectional communication framework 
between operators and the HRC system. By incorporating various interface devices and sensors, a 
multi-modal interaction pipeline is structured to facilitate communication of (i) data and goals to the 
system (by the user) and; (ii) pending and current tasks, robot trajectories, event notifications, report 
results to the operator (by the system). Communication channels include AR devices and tablet 
interfaces. Supported by the knowledge base’s ontology, the Human-System Interaction Module can 
be tailored to the operator’s preferences and needs to establish an intuitive and user-aware working 
environment. 

4.2 General Integration of Modules Supporting Personalized Collaboration 

This section discusses how the modules introduced above work together for user-awareness. Figure 2 
shows the integration of these modules and the information and control flow. Communication 
mechanisms and the exchange of messages/signals among the modules can rely on existing software 
libraries and tools (e.g., Robot Operating System – ROS). Each module indeed defines a set of topics and 
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services used to offer information/functionalities to and gather the necessary information from other 
modules. 

 

Figure 2 — Integration schema of the considered modules 

First, the Human-System Interaction Interface authenticates a particular worker into the system and 
retrieves information about his/her user profile (e.g., data from previous sessions, preferences, known 
skills) and information about the production context (e.g., known production goals, related production 
procedures, skills of the collaborative robot). The worker decides the production goal to perform and 
sends a “starting signal” to the Knowledge Base module through the Human-System Interaction Interface. 
The generated message specifies the production goal and the ID of the user that takes part to the process. 

The Knowledge Base receives this signal through a subscribed topic, contextualizes knowledge (e.g., infer 
the subset of operations the worker and the robot can perform) and configures the Task Planner by 
calling a dedicated service. This service specifically allows the Knowledge Base to automatically define 
the control variables of the planning model according to the requested production goal and the profile of 
the user (e.g., robot capabilities, operator skills, performance profile). The Task Planner then synthesizes 
and executes an optimized task plan. During the execution, the module dispatches task requests to the 
Human-System Interaction Interface and the Action&Motion Planner to interact with the robot. 

The Human-System Interaction Interface displays information on the tasks requested to the human and 
waits for feedback from the operator. This ensures the correct dispatching of the task plan to the human 
actor. Similarly, the Action&Motion Planner receives tasks’ requests for the robot and puts them into 
action. After the execution of the task, it sends feedback to the Task Planner to inform it about the 
outcome. The Human-System Interaction Interface and the Action&Motion Planner offer a set of actions 
that enable visualization and monitoring of human and robot tasks. For example, the Action&Motion 
Planner informs the Human-System Interaction Interface on the future robot trajectories so that they can 
be visualized on an interface (e.g., through AR). 

4.3 Modular deployment through containerization 

The modularity of the HRC architecture should be also reflected in the software packaging. The system 
should use a toolset to increase productivity, reduce the setup time in complex environments, and easily 
configure a customized version of the HRC architecture. Each module is packaged in a separate docker 
image and uploaded to a docker repository. Exceptions to this rule can exist when there are software 
modules with specific run-time requirements (e.g., Android applications of modules running on a 
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standard Android tablet). By using a docker compose tool that enables the definition and execution of 
multi-container applications, the HRC system can be configured to run in different configurations using 
an appropriate configuration file. Then, a HRC instance can be created and started with a single command. 

5 Ontology-based Model of Workers  

HRC scenarios pursues a tight “teamwork” between the human and the robot requiring shared view and 
“mutual understanding” of the objective, constraints, capabilities, and limitation of each other member 
as well as an implicit or explicit agreement about the procedure to follow [12, 13, 14]. The ontological 
model supports the effective coordination of human and robotic agents by providing a formal 
representation of: 

(i) production objectives, tasks, and operational constraints; 

(ii) worker and robot capabilities/skills; 

(iii) known performances, preferences and physical/behavioral features of workers that may affect the 
interactions with the robot and the resulting collaborative processes. 

5.1 Context-based Ontology for Collaborative Scenarios 

The Ontology for Human-Robot Collaboration has been introduced in [11] as a general model 
characterizing collaborative dynamics between human and robot agents acting in a manufacturing 
scenario. It therefore defines the formal model (TBox) the Knowledge Base Module uses to build an 
abstraction of the production environment (ABox) and infer/contextualized useful information. Ontology 
is organized into a number of contexts, each defining concepts and properties that characterize an HRC 
scenario with respect to a particular perspective. A knowledge base is structured in shape of Knowledge 
Graphs (KGs) [15, 16] and thus can be manipulated through standard semantic technologies, e.g., based 
on the Web Ontology Language (OWL) from W3C [17]. 

As shown in [11] the environment, behavior and production contexts describe respectively: 

(i) physical entities and observable properties of a collaborative environment; 

(ii) skills and capabilities of the human and robot; 

(iii) production goals, tasks, and constraints of the HRC process. 

The behavior context uses the concept of Function [18] to correlate production tasks with the low-level 
operations the worker and the robot can perform (i.e., the functions). 

5.2 Functions and Production Requirements 

The goal of the Ontology is to characterize production objectives, human and robot capabilities and thus 
contextualize operations they can perform to conduct production tasks collaboratively. The concepts 
Cobot and HumanWorker are defined as a specialization of the DUL:Agent. The acting qualities of each 
agent are represented by means of Capability and Function. Capabilities characterize competencies that 
agents have according to their structures and skills. For example, a human worker can perform welding 
operations if she is skilled in that task. Similarly, a robot can perform “pick and place” of objects if it is 
endowed with a gripper. Figure 3 shows an excerpt of the Ontology pointing out the taxonomical 
structure of the concepts representing different types of production tasks. 
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Figure 3 — Excerpt of the Ontology showing the taxonomical structure of production tasks. The 
picture shows the integrated taxonomy of functions introduced in [18] 
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While capabilities do not depend on the features of a production context, the concept of Function 
characterizes low-level production tasks humans and robots should perform in a manufacturing 
environment. The Ontology integrates the Taxonomy of Functions defined in [18] and defines different 
types of Function according to the effects they have on DUL:Quality of objects. The instances of Function 
a generic agent can perform can be dynamically inferred according to actual capabilities of that agent. 
Namely, the model of Function proposed in [18] is extended to correlate them to the set of Capability 
needed to correctly perform them. The separation between functions and capabilities supports 
contextual reasoning since functions contextualize general agents’ capabilities with respect to the needs 
of a production scenario. 

Function ⊑ ProductionTask ⊓ 

∃ DUL:isDescribedBy.ProductionNorm ⊓ 

∃ canBePerdformedBy.DUL:Agent ⊓ 

∃ hasEffectOn.DUL:Quality ⊓ (1) 

∃ hasTarget.ProductionObject ⊓ 

∃ requires.ProductionObject ⊓ 

∃ requires.Capability 

The description of a production process follows a task-oriented approach. The top-level element is the 
ProductionGoal which defines the general objectives of a production context. Each ProductionGoal is 
associated with a number of ProductionMethod (at least one method for each goal is necessary) 
specifying production and operational constraints. 

Each ProductionMethod always refers to one ProductionGoal and is composed by a hierarchical 
organization of ProductionTask. The ontology defines three types of tasks: (i) ComplexTask (either 
disjunctive or conjunctive); (ii) SimpleTask and; (iii) Function. A ComplexTask is a ProductionTask (i.e., 
an instance of DUL:Method) representing a compound logical operation. The hierarchical structure is 
enforced by the property hasConstituent which associates ComplexTask with either SimpleTask or other 
ComplexTask. 

ComplexTask ⊑ ProductionTask ⊓ 

∃ DUL:hasConstituent.(ComplexTask ⊔ SimpleTask) ⊓ 

∃ DUL:isDescribedBy.OperativeConstraint 

(2) 

A SimpleTask represents a leaf of the hierarchical structure of a ProductionMethod. This concept 
describes primitive production operations that could be conducted leveraging the functional capabilities 
of the agents. A SimpleTask requires the execution of several Function instances by the agents. 

SimpleTask ⊑ ProductionTask ⊓ 

∃ DUL:hasConstituent.Function ⊓ 

∃ DUL:hasConstituent.SimpleWorkpiece ⊓ 

∃ DUL:isDescribedBy.(InteractionModality ⊔ OperativeConstraint) 

(3) 

The execution of a task should comply with operational constraints that are represented as 
ExecutionNorm. Two main types of execution norms can be defined: the concept OperativeConstraint 
describes norms requiring the sequential or parallel execution of tasks; the concept of 
InteractionModality instead characterizes norms about how agents should cooperate to conduct a task. 
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5.3 Human Factor and User Model 

The current work specifically focuses on the Human Factor context and elaborates on its correlations 
with the behavior and the production contexts. Figure 4 shows part of the taxonomic structure defined to 
represent behavioral and physical features of workers. Such concepts define the variables composing the 
user model and therefore characterize the representational space of qualitative aspects of a worker (i.e., 
types of DOLCE:Quality). 

Concepts characterizing the qualities of the physical body of a worker, Figure 4 (a), model physical, 
health, and cognitive parameters. Information about these variables enables the detection and 
monitoring of anomalous or dangerous working conditions, such as bad ergonomics, body position in 
hazardous areas or mental, and physical fatigue. Concepts concerning the qualities of the behavior of a 
worker, Figure 4 (b), instead model his/her performance in a given production scenario (e.g., the 
expertise level or the average time taken to perform a task). 

The concept WorkerExpertiseLevel estimates “how much knowledgeable” a worker is about a particular 
production scenario. On the one hand, the expertise level determines the (sub)set of production tasks a 
human worker can conduct. For example, some tasks may require a certain minimum level of experience 
to be performed by a worker. On the other hand, it characterizes the reliability of the performance of a 
worker and thus the expected uncertainty about the duration of executed tasks. Low experience 
determines higher uncertainty and thus higher variance of the performance. High experience instead 
denotes lower uncertainty and thus more consolidated performance (i.e., lower variance). 

 

 

a) b) 

Figure 4 — Excerpt of the Ontology concerning the variables of the user model 

The concepts WorkerPerformance supports a numerical representation of user performance. The 
Ontology distinguishes between accuracy (WorkerTaskAccuracy) and efficiency 
(WorkerTaskPerformance). These variables support the incremental definition of a dataset collecting 
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historical data about performance. Such a dataset can be analyzed to incrementally learn performance of 
users and adapt collaborative processes over time. It can be used for example to infer an efficiency matrix 
encoding the average completion time of production tasks for (known) users. 

6 User-Aware Collaboration 

The production and user-centered knowledge is at the disposal of other modules to adapt production 
processes. Such knowledge is necessary to push forward novel collaboration paradigms where the 
system adapts interactions and collaborative processes to the known features of participating users. 
Knowledge inference and extraction procedures can be implemented to dynamically generate 
contextualized planning models to the specific features of a domain [19, 20] as well as specific skills and 
preferences of a human worker. This section explains how the task planning, the Action&motion, and the 
human-system interaction module take advantage of the user model to support personalization and 
adaptation. 

Artificial Intelligence Planning & Scheduling [21, 22, 23] is well suited to endow robot controllers with 
the flexibility needed to autonomously decide actions and adapt behaviors to the state of the environment 
[24, 25]. Planning technologies pursue an optimization perspective aiming at finding plans that minimize 
or maximize a specific metric (e.g., minimization of the planning cost). Different metrics and features of a 
domain can be taken into account, depending on the specific planning formalism used. In application 
domains like HRC, reasoning about causality, time, concurrency, and simultaneous behaviors of domain 
features (e.g., the human and the robot) is crucial to synthesize and execute effective plans. 

Task planning capabilities developed within HRC can rely, for example, on the timeline-based formalism 
[26] and the PLATINUm software framework [27, 28, 29]. This planning formalism integrates reasoning 
about causal and temporal aspects of a planning problem and has been successfully applied to several 
concrete scenarios [30, 31, 32]. PLATINUm and the formalism introduced in [26] integrates temporal 
uncertainty and controllability issues to generate plans that are robust when executed in the real world 
[33, 25]. Uncertainty is especially important in HRC where robots should continuously interact with 
uncontrollable autonomous entities like human workers. Considering the manufacturing context and 
other works synthesizing optimal, multi-objective assembly processes [34, 35], PLATINUm is extended 
by integrating multiple objectives and uncertainty. This allows to synthesize (timeline-based) plans that 
achieve a good trade-off between efficiency (i.e., minimize the cycle time of collaborative processes), and 
take into account temporal uncertainty for reliable execution [36]. 

6.1 Personalized Task Planning 

A timeline-based specification consists of several state variables that describe behaviors of domain 
features. A state variable is formally defined as a tuple SV = ⟨V,T,D,γ⟩. A set of values vi ∈ V represent states 
and actions the domain feature can assume or perform over time. A transition function T : V → 2V specified 
valid sequences of values vi ∈ V. A duration function D : V → R × R specifies each value vi ∈ V the expected 
lower and upper bounds of its execution time. A controllability tagging function γ : V → {c,pc,u} specifies 
if the execution of a vi ∈ V is controllable (c), partially controllable (pc) or uncontrollable (u). Information 
about controllability allows a task planner to deal with uncontrollable dynamics of the environment when 
executing a (timeline-based) plan. This is known as the controllability problem [37] and is particularly 
important when an artificial agent like a collaborative robot should interact with “unpredictable” agents 
like a human worker. Synchronization rules constrain the “runtime” behavior of the modeled domain 
features. They specify causal and temporal constraints necessary to coordinate the different features as 
a whole complex system (e.g., a HRC cell) and synthesize valid temporal behaviors (i.e., the timelines). 

The definition of state variables and synchronization rules modeling a HRC scenario follows a hierarchical 
decomposition methodology correlating high-level production goals to simpler production tasks and 
functions [38]. A state variable SVG describes the high-level production goals supported by the HRC work-
cell. A number of state variables SVLi where i = 0,...,K describe the production procedure at different levels 
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of abstraction. The values of these state variables represent production tasks at a specific level of 
abstraction i ≤ K (where K is the number of hierarchy levels of the procedure). A state variable SVR and a 
state variable SVH respectively describe the low-level operations (i.e., instances of Function) the robot and 
the human can perform. Finally, a set of synchronization rules S describes the procedural decomposition 
of high-level goals (i.e., values of state variable SVG) into simpler production tasks (i.e., values of state 
variables SVLi), until they are associated with a number of functions of the human and the robot (i.e., 
values of state variables SVR and SVH). 

The state variable SVH describes behavioral dynamics of the worker collaborating with the robot. The 
state variable SVH = ⟨ VH,TH,DH,γH⟩ is thus generated from the knowledge base according to the user profile 
of the participating worker. The values vj ∈ VH are defined according to the tasks/functions the worker 
can perform in the given production scenario. No assumptions can be made on the actual duration of 
tasks/functions assigned to the worker. Consequently, all the values of SVH are tagged as uncontrollable, 
γH (vj) = u,∀ vj ∈ VH. The duration bounds of each value vj ∈ VH and are defined by considering the mentioned 
performance matrix that can be extracted from the knowledge base. A performance vector is extracted 
representing known performance of user ui ∈ U. Such a vector specifies, for each value vj ∈ VH, the average 
time δi,j the user ui takes to accomplish the task task(vj) = tj ∈ T (δi,j = ∞ if no information is available). 

At this point the expertise level of the user characterizes the expected variance of the average duration. 
The combination of this information is thus used to define the personalized lower and upper duration 
bounds for each value vj ∈ SVH. Specifically, a certain amount of uncertainty is associated to each of the 
three expertise levels defined into the ontological model: (i) novice; (ii) intermediate; (iii) expert. The 
higher the expertise level the lower the uncertainty about the performance. It is defined an uncertainty 
index associating each expertise level with constant value of uncertainty to consider: Ω = {0.8,0.5,0.2}. 
Given a user ui ∈ U, a function Υ : U → Ω specifies the uncertainty index corresponding to the expertise 
level of the user. The resulting duration bounds of the values composing the state variable of the worker 
vj ∈ VH are then defined as follows: 

D (vj) = (δi,j − ωi ∗ δi,j,δi,j + ωi ∗ δi,j) (4) 

This mechanism dynamically adapts the temporal dynamics encapsulated into a task planning model 
according to the changing performance of the same worker as well as to the performance of different 
workers. The finer the temporal model of the worker, the better the optimization of plans and resulting 
collaborative processes [39]. 

6.2 Integrated Task and Motion Planning 

To guarantee a high level of flexibility in the planning and execution of collaborative tasks, a hierarchical 
Task&Motion Planning framework that permits online planning of the robot trajectories according to the 
user and the environment’s state should be implemented. This is key to ensuring a smooth collaboration 
between the human and the robot because the robot’s tasks can be robust with respect to changes in 
objects and tools’ positions, and the robot’s movement can be optimized to avoid interference with the 
user’s activities [40]. 

The key idea of this approach is that robot tasks coming from the task planner are symbolic and should 
be converted into a sequence of geometric movements by the Action&Motion Planning module. In this 
way, the task planner reasons about the best assignment and scheduling of tasks disregarding the actual 
geometric realization of each task. This is necessary because the robot’s actual trajectories are not known 
a priori. Indeed, they need to be planned and adjusted on the fly according to the scene. Moreover, the 
motion planner can feature user-aware behavior that makes the robot’s motion more dependable 
according to his/her preferences. 

The Action&Motion planning module consists of a hierarchical framework composed of (i) a task 
decomposition module, (ii) a proactive motion planner, (iii) a reactive speed modulation module. A 
scheme of the proposed framework is in Figure 5. 
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Figure 5 — Action&Motion Planning module 

6.2.1 Task decomposition module 

The task decomposition module owns a set of predefined skills; that is, high-level behaviors that the robot 
can execute autonomously (e.g., pick an object, screw a bolt). Skills are a model of an abstract task and 
allow the module to decompose a task into a sequence of robot movements. For example, the task pick an 
object is decomposed into a sequence of basic movements and conditions: (i) check if the gripper is 
empty; (ii) open gripper; (iii) move to approach pose; (iv) move to grasp pose; (v) close gripper. 

Given an object to be picked, the task decomposition module retrieves the necessary geometric 
information from the scene (e.g., by querying the Knowledge Base), checks whether the task conditions 
hold, and initializes the basic movements according to the scene state. Notice that, at this stage, a task 
might have multiple equivalent geometric realizations. For example, the symbolic task pick a blue cube 
may require choosing among multiple blue cubes, each with numerous grasping points. This level of 
complexity is addressed by the proactive motion planner. 

6.2.2 Proactive motion planner 

The proactive motion planner solves the motion planning problem related to each basic movement of a 
task, as decomposed by the Task decomposition module. The term proactive distinguishes this module 
from the reactive speed modulation module. The proactive planner is intended to find a collision-free 
trajectory according to a prediction of the user’s actions and movements. Once a trajectory has been 
found, its execution starts, and the reactive layer monitors and adjusts it according to real-time scene 
information. Moreover, the path is sent to the Human-System Interaction Module for visualization so that 
the user will foresee the robot’s movement in the short run. 

The proactive trajectory planner has been implemented by using the standard path-velocity 
decomposition paradigm, in which a path planner finds a collision-free path from a start to a goal state, 
and a path parametrization algorithm (e.g., TOPP [41]) optimizes the velocity profile along the path. 
Regarding path planners, sampling-based algorithms are preferred, for they can efficiently deal with 
high-dimensional search space [42]. 
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User awareness is embedded in the path planner using a cost function that depends on the human state. 
The typical approach minimizes a weighted sum of an efficiency term (e.g., the path length) and user-
aware terms, such as human-robot distance [43], trajectory repeatability [44], or human visibility [45]. 
NOTE Aspects of motion including safety considerations are out of the scope of this CWA and shall be designed 
in accordance with the relevant ISO/TC 299 or CEN/TC 310 standards, where necessary. 

6.2.3 Reactive speed modulation module 

The reactive speed modulation module modifies the nominal speed during the execution of each 
trajectory. In general, reactive motion planners are shifting from simple yet conservative strategies such 
as safety zones to optimized methods that adapt the robot motion continuously [46, 47]. 

The robot's speed is adjusted in this task in accordance with the requirements in the technical 
specification ISO/TS 15066 (Robots and robotic devices – Collaborative robots), which defines speed 
reduction rules for collaborative operations with and without admissible contact between robots and 
humans. For example, if speed and separation monitoring is applied, the human-robot distance S must not 
fall below a protective distance Sp. [48] 
NOTE Aspects of speed modulation including safety considerations are out of the scope of this CWA and shall 
be designed in accordance with the relevant ISO/TC 299 or CEN/TC 310 standards, where necessary. 

6.3 Augmented Human-Robot Interaction 

The human-robot interaction framework aims to structure a usable and personalized interaction pipeline 
between the operator and the robot towards increased awareness and well-being. All those attributes are 
mostly accomplished by using multiple human senses (i.e., vision, hearing, touch) through interaction 
modalities available in customized interfaces [49]. Both modalities and customization options formulate 
a user-centric framework that can meet the requirements of novice and advanced operators. 

In terms of architecture, the multi-modal interaction framework consists of three layers (see Figure 6). A 
broker forms the top layer of this module and is responsible for parsing information from the HRC’s 
modules to the end devices, and vice versa [50]. The intermediate layer incorporates the available end 
devices, thus their respective applications. The bottom layer gathers all the supported interaction 
modalities based on the specifications of the intermediate hardware. The existence of the broker ensures 
stability against a varying number of deployed devices. During operations, there are redundant ways of 
interaction since information can flow simultaneously to all devices. This suppleness does not only serve 
the anthropocentric HRC system design principles, but also contributes to the overall system resilience 
against hardware limitations (e.g., battery, network range) or even issues (e.g., damages). 

Focusing on the information streams, the module comprises mechanisms for human-system (HS) and 
system-human (SH) interaction. The former ones are needed either for operator monitoring or direct 
robot control. Despite the advances in machine learning for human activity recognition, the improvisation 
of operators can still highlight limitations in those systems. Thus, the developed interaction framework 
supports functionalities for monitoring purposes. In detail, all deployed applications should involve a 
”Task completed” feedback apparatus in the form of voice commands, touch, and augmented buttons. The 
same modalities can also be used as inputs for direct robot and system control (e.g., stop or proceed). 
Each application processes those inputs and communicates to the broker normalized commands or 
requests that are parsed to the rest of the HRC modules. On the contrary, when the system communicates 
to the human, the involved modules share information to the broker that is then streamed simultaneously 
to all end devices. Each application makes available the information based on the hardware’s capabilities 
in the form of textual, graphical, or audio material. 

The volume and type of communicated information should be closely related to the operator’s experience 
level. For novice users, the module offers intuitive visual instructions that can support them during 
assembly operations via augmented 3D models, panels, arrows, or screen-based figures. For greater 
awareness, robot-centric information can also be provided through 3D augmented trajectories, 
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notifications, and warnings. Textual instructions and info are standard in plain or extended format. Unlike 
novice users, who need support and a clear description of robot behavior, experienced operators could 
be distracted if they are communicated with all aspects of information. For this reason, the customization 
of the interaction framework can be performed during runtime through the related options panels. 
According to each operator’s entity, tailoring of the interfaces is supported by the Knowledge Base. The 
customization options suggest the selection of available devices, available modalities, assembly 
information detailing, feature positioning, button positioning, and robot information detailing. The 
personalization of the system’s front-end through customizable applications and the selection of multiple 
devices is achieved by implementing a distinct hierarchical architecture. 

 

Figure 6 — SHAREWORK HRC’s Human-System interaction module architecture 
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Annex A 
(informative) 

 
Integration and Deployment: use case 

The proposed approach has been demonstrated in the SHAREWORK project (‘Safe and effective human-
robot cooperation towards a better competitiveness on current automation lack manufacturing processes,’ 
funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation 
under Grant Agreement No 820807), in a case study derived from a mechanical machining scenario. 

The case study is characterized by unpredictable market changes in terms of demand, which require 
massive use of Flexible Manufacturing Systems (FMSs) to remain highly competitive in the market [51]. 
In FMSs, parts to be machined are mounted on multi-fixturing devices called pallets. Pallets are manually 
assembled at a loading/unloading station (LUS) and moved from/to general-purpose machine centers to 
be machined. The number of pallet configurations, i.e., pallet mounting clamping systems/jigs, and 
products present simultaneously in an FMS can be considerable. Due to the high number of different 
operations to be performed on the pallets, LUSs influence FMS performance in terms of final throughput. 
Specifically, three critical operations at LUS are performed: assembly, disassembly, and quality 
inspection. The application is stimulating for human-robot collaboration because the process throughput 
would benefit from juxtaposing humans’ manipulation skills and robots’ tirelessness. For example, robots 
could be exploited to perform batches of simple, repetitive operations, while a human could perform the 
most complex operations and perform quality checks. Note that no fixed scheduling usually applies [52]; 
a dynamic online reconfiguration of the workflow is required by operators who may change sequences 
and roles. 

Consideration is given to the scenario depicted in Figure 7 in this context. A collaborative LUS is 
composed of a small-size robot, Universal Robots UR10e, mounted on a linear track to extend its range of 
motion. The LUS owns four pallet positions: P0 is the arrival position of a new pallet brought by a mobile 
robot; P1 and P2 are the working position, where the pallets are mounted, unmounted, and checked; P3 
is the departure position, where a mobile robot will load the finished pallet to move it to next stage of the 
process. The robot and the human operator can work simultaneously at the LUS, either on the same pallet 
or two different pallets. The process requires the following stages: 

1. A mobile robot brings a new pallet to P0 

 

 

a) b) 
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Figure 7 — Demonstrator setup and description of the work positions: a) Setup components; 
b) Setup working positions. 

2. The pallet is moved to a free position (P1 or P2). Notice that the pallet can be moved to P2 only if P1 
is not occupied. 

3. The pallet is unmounted to extract the finished part. 

4. A new raw part is inserted, and the pallet is mounted. 

5. The pallet is moved to P3. 

6. A mobile robot picks up the pallet from P3. 

Steps 2 and 5 are always performed by the human operator because the robot is not able to lock/unlock 
and move the pallet. Steps 3, 4, and 5 can be performed by both the robot and the human. Notice that 
more than up to four pallets can be present at the LUS at the same time, meaning that Steps from 2 to 5 
can be performed without a fixed scheduling and assignment wither by the human or the robot. 
Moreover, pallets can have different geometries and therefore requires different operations to be 
mounted and unmounted. In this case study, three different types of pallets requiring high flexibility in 
the planning and execution phases are examined. 

A.1 Process Representation in the Knowledge Base 

To successfully coordinate human and robot operations, it is necessary to configure the Knowledge Base 
module of Figure 2 first. This configuration step allows the system to build an abstraction of production 
procedures characterizing the specific needs/requirements of an HRC cell and the specific skills and 
features of participating acting agents. To this aim, an ontological model of the scenario is manually 
defined using Protege1). It is defined individuals and assert properties necessary to characterize the 
(relevant) information about the production environment and the capabilities of the agents that take part 
in the process. 

The main elements of the environment are the workpieces (i.e., pallets), the worker and the cobot agents, 
and the positions they occupy while performing operations. Workpieces can be of three types entailing 
different geometric constraints and low-level operations for their manipulation. These workpieces are 
thus modeled separately as three distinct instances of Workpiece: (i) 0218; (ii) 1121 and; (iii) 1122. This 
distinction supports the contextualization of production procedures according to the particular type of 
workpiece to be worked. During the execution of a production procedure, each workpiece occupies a 
specific environment location. In the considered scenario, such environmental locations are subject to 
physical constrains limiting the number of objects that can occupy them simultaneously. They are thus 
modeled as BinaryProductionLocation that are ProductionLocation associated with a ResourceCapacity 
which limits to 1 the number of ProductionObjects that can stay at the same location simultaneously (i.e., 
these locations are characterized by a binary state denoting the location as free or busy). 

Each type of workpiece is associated with a ProductionGoal specifying a different ProductionMethod and 
different production operations. Such production operations are defined as individuals of 
ProductionTask. The knowledge base describes operational constraints and alternative decomposition of 
tasks as well as alternative assignments to the human and to the robot. In this regard, individuals of 
DisjunctiveTask describe alternative way of implementing/decomposing a ProductionTask. For example, 
the general task process 1121 is modeled as DisjunctiveTask and is associated with two alternative sub-
tasks through the property DUL:hasConstituent: (i) process 1121 p1 and; (ii) process 1121 p2. Both sub-

 
1) A well-known editor for ontologies and knowledge bases - https://protege.stanford.edu 
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tasks are instances of ConjunctiveTask and represent two alternative ways of performing the production 
task process 1121 p2: (i) perform production operations for workpiece 1121 on position1 and; (ii) 
perform production operations for workpiece 1121 on position2. The actual choices would be made 
dynamically by a task planner depending on previously scheduled operations and the known state of 
physical locations/positions of the HRC cell. 

A similar decomposition is defined for low-level tasks that can be assigned to the human or to the robot. 
An example is the operation requiring to mount the pallet 1121 in a specific position of the cell. The 
DisjunctiveTask mount 1121 p2 is decomposed into two (alternative) simpler ProductionTask that are: 
(i) mount 1121 p2 worker and; (ii) mount 1121 p2 cobot. This disjunction characterizes the alternative 
of assigned the mounting task to the worker or to the robot. The two sub-tasks are both instances of 
IndependentTask meaning two individuals of SimpleTask associated with a CollaborationModality of 
type Independent. Following the ontological definition of independent collaborative tasks, they are 
respectively decomposed into a HumanFunction and a RobotFunction of type Assembly representing the 
actual operations performed on the workpiece. 

The defined knowledge base completely characterizes the production process and can be used to 
configure the planning and interaction modules deployed into the scenario. A designed knowledge 
extraction procedure automatically generates contextualized timeline-based specifications for: (i) 
hierarchical decomposition and planning constraints concerning known goals and; (ii) temporal 
dynamics and controllability properties associated with robot and worker capabilities. Such specification 
provides the Task Planner with the rules to compute collaborative plans for the considered 
manufacturing scenario at hand. A graph-based description of production procedures is automatically 
extracted from the knowledge base and used to generate a suitable timeline-based task planning model 
[19, 20]. The resulting production procedure is organized into several hierarchical levels correlating high-
level production goals with low-level tasks and individuals of Function the human and the robot should 
perform to conduct related production processes correctly. The following section describes with further 
detail the timeline-based model and provides an example of a plan. 

A.2 Task Planning and Scheduling 

A timeline-based task planning model is synthesized by the knowledge base to “operationalize” 
production procedures and coordinate human and robot behaviors. A number of state variables are 
defined to characterize states and/or actions that relevant domain features assume and/or perform over 
time. Four state variables SVp0, SVp1, SVp2, SVp3 describe the state of the working positions of the pallets. 
Since these physical locations are modeled as BinaryProductionLocation in the knowledge base, these 
variables are associated with two values, Vp0,Vp1,Vp2,Vp3 = {Free,Busy}. Then, transitions Tp0(Free), 
Tp1(Free), Tp2(Free) are defined, Tp3(Free) = Busy, Tp0(Busy), Tp1(Busy), Tp2(Busy), Tp3(Busy) = Free and 
duration (1,+∞) for all of them. These state variables are used to encode binary resource constraints and, 
thus, enforce a mutually exclusive use of the associated physical locations. 

Other two state variables describe behaviors of the human and the robot in terms of the set of Function 
that they can perform over time. These functions are the inferred instances of low-level operations the 
human and the robot can perform in the considered scenario. The state variable of the robot SVR is thus 
an associated with the set of values denoting the function it is supposed to perform VR = {Idle, Release p1, 
Release p2, Pick p1, Pick p2, Assembly p1, Assembly p2, Disassembly p1, Disassembly p2}. The values Release 
p1, Release p2 and Pick p1, Pick p2 are instances of the function PickPlace and denote respectively the 
operations of removing a worked piece from the pallet (i.e., release piece) and placing a new raw piece 
into the pallet (i.e., pick piece). The transition function requires all value changes to pass through the idle 
state as follows: TR (Idle) ∈ {Release p1, ..., Disassembly p2}; TR (Release p1) = {Idle}; ...; TR (Disassembly p2) 
= {Idle}. All the values of the robot vR,i ∈ VR are tagged as partially controllable (γR (vR,i) = pc) because the 
actual duration of their execution can interfere with the worker. The duration bounds of these values 
instead is set according to the average observed execution time. The state variable of the human SVH is 
structured similarly to SVR. In this case, it is necessary to consider the additional operations the worker 
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can perform, and robot cannot. These are modelled with additional values VH = {PickPlace p0p1, PickPlace 
p1p2, PickPlace p2p3,...}. The value transition function follows the same “pattern” of SVR. However, in this 
case, all the values vH,i ∈ VH of the state variable SVH are tagged as uncontrollable (γH (vH,i) = u) since the 
system cannot control the behavior of the worker. Furthermore, the duration bounds of the values are 
defined according to Equation 4 and thus they depend on both the average duration of their execution 
and on the uncertainty index δ set according to the expertise level of the worker. 

To synthesize production operations, it is necessary to define “functional” state variables encapsulating 
abstract production tasks. Such state variables are directly associated with the production procedure 
extracted from the knowledge base. The actual number of these variables (and their values) depend on 
the complexity of the modelled procedure. In general, each “production” state variable is associated with 
a specific abstraction level of the extracted hierarchical procedure. A goal state variable SVG encapsulates 
high-level production requests and is associated with the individuals of ProductionGoal. Individuals of 
this concept are root elements of the production procedure and are mapped to the values of SVG. In this 
case there are three diverse types of goals, each associated to a particular type of pallet VG = {process 
1121, process 1122, process 0218}. Three different hierarchical procedures correspond to these three 
goals. These values are all controllable (γ (vG,i) = c) and do not have specific duration bounds since their 
actual duration depends on the planning and scheduling of underlying human and robot operations. 
Intermediate N −1 levels of the procedure are modeled through “production state variables” SVL1, ..., 
SVLN−1. The last hierarchical level (N) of the decomposition entails individuals of Function that are already 
represented through SVR and SVH. The values of production state variables represent individuals of 
ProductionTask such as unmount 1121 p2, mount 1121 p2 and thus complex/abstract production 
operations that need to be further decomposed in simpler ones. Starting with high-level production 
requests (i.e., values of the goal state variable vj ∈ VG) task decomposition and the needed causal and 
temporal constraints are modelled through a set of synchronization rules. Each rule has individuals of 
ProductionTask (i.e., values vLi ∈ VLi) as trigger (i.e., the head of the rule). Individuals of DisjunctiveTask 
are triggers of different rules in order to model alternative decomposition. 

The Task Planning Module implements goal-oriented acting capabilities using the open-source ROSJava 
Package ROXANNE2). Once configured, the module is ready to receive production requests (i.e., planning 
goal) through a dedicated input topic. The synthesis of a task plan consists in deciding the assignment of 
production tasks to the human and the robot that best takes advantage of the collaboration (i.e., optimize 
the production process) in the given scenario [7, 28, 39]. The resulting assignment is then online 
dispatched to the human and to the robot by sending task execution requests respectively through the 
Human-System Interaction Module and the Motion Planning Module (see Figure 2). 

 

Figure 8 — Simplified view of a plan synthesized for the execution of a collaborative process 
concerning Workpiece 1122 – It shows the timelines synthesized for each state variable of the 

task planning model (i.e., Goal, Process, Tasks, Worker and Cobot state variables) with the 
scheduling of related tokens 

 
2) https://github.com/pstlab/roxanne_rosjava.git 
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Figure 8 shows an example of a timeline-based plan. It specifically shows the timelines of the plan through 
a Gantt representation depicting tokens planned for the state variables of the domain and their allocation 
over time. Note that this Gantt representation shows a specific instance of the plan called the earliest start 
time. Timelines indeed encapsulate an envelope of possible temporal behaviors (i.e., plan instances) 
through temporal flexibility [26]. This flexibility is crucial to deal with temporal uncertainty and support 
reliable execution of timelines in real environments [39, 53]. 

A.3 Action Planning and Execution 

High-level tasks dispatched by the task planner module are put in place by the action planning module. 
This module converts symbolic tasks into a sequence of robot movements and tool operations (e.g., 
open/close gripper). The Task Decomposition module receives the task from the task planner and queries 
a database to decode the type of the task and its geometrical properties. The type of task and its properties 
determine the set of operations that a task requires. 

When a task request comes from the task planner, the Task Decomposition module converts it into a set 
of basic operations. For example, task mount 1121 p2 boils down to: (a) move to P2 approach position; 
(b) approach nut; (c) unscrew nut (activate power drill); (d) push locking bracket; (e) move to piece 
grasping pose; (f) close gripper; (g) move to unloading box; (h) open gripper. Each operation corresponds 
to a point-to-point robot movement or a change in the state of the robot’s auxiliaries (e.g., the gripper and 
the power drill). For all robot’s movements, the Task Decomposition sends the decomposed actions to a 
motion planning algorithm. When the task is executed, it returns the outcome to the task planner. If the 
task is successful, the task planner will dispatch the next task in the plan. Otherwise, it would replan 
according to the reported error. Notice that, since the proposed framework is designed for dynamic 
environments, task decomposition and motion planning are performed online, based on the current state 
of the cell. 

The Task Decomposition module was developed in C++ and Python 3 within the ROS framework. The 
communication with the task planner is managed by a ROS-action server that receives the tasks from the 
task planner and queries a MongoDB database to retrieve the task properties. The planning and execution 
phases are managed by manipulation framework, an open-source library that implements basic skills 
[54]. The manipulation framework uses MoveIt! planning pipeline and planning scene. Thanks to MoveIt!’s 
plugin-based architecture, it is possible to load motion planners dynamically from state-of-the-art 
libraries available in MoveIt! (e.g., OMPL, CHOMP, and STOMP). In this work, a human-aware path planner 
[55] is utilized, which accounts for the position of the operator in the cell, according to Section 6.2.2. The 
manipulation framework is also modular with respect to the controller. In this work, the human-aware 
reactive speed modulation module is implemented (see Section 6.2.3) as a ROS controller that changes 
the robot speed according to the human-robot relative distance. This allows for a real-time 
implementation with a sampling rate equal to that of the robot controller (500 Hz), ensuring prompt 
reaction of the robot motion. 

A.4 Human-System and System-Human Interaction 

For this industrial case, the HS-SH interaction module was deployed by spawning two applications, 
hosted on Augmented Reality Headset Microsoft HoloLens 2 and Android Tablet Samsung Galaxy S4 
(Figure 9). Voice, gesture, touch, hearing, and sight-related modalities are available during operation, 
either for direct system control or for worker support. 
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Figure 9 — Demonstrator setup and HS-SH interaction module 

The Knowledge Base configures the type of modals and features within the application environments 
according to the operator’s level of expertise. Online customization options are offered to users to 
maximize personalization thanks to a several options for each feature. Authentication via operator 
profiles ensures that user models are updated with the customization settings and are linked to each 
operator. 

The human worker and the robotic arm are aware of each other through bilateral communication of 
information about each agent’s actions. More specifically, the user can press easy-to-use buttons to send 
feedback to the Task planner about the successful execution of a human task or action. On the contrary, 
the robot’s status is broadcasted via textual panels in addition to visualized robot trajectories in 3D 
augmented-reality (i.e., AR headset) or 2D screen-based (i.e., tablet) formats, as planned by the Motion 
Planner. Awareness about robot actions is also promoted via audio notifications that are enabled upon 
robot movements. 

The implemented interaction module also supports users during manufacturing operations through 
intuitive instructions in extensive or plain form, depending on their preferences and expertise. The AR 
application augments the physical system by visualizing digital assistive content within the workstation 
(Figure 10). In detail, 3D augmented models and arrows (static or moving) instruct the operator on how 
to manipulate related components toward successful assembly. On the same basis, the tablet application 
provides assistive figures. In parallel, task information panels are filled by the “Task planner”, providing 
Task id, name, remaining tasks, and instructions about current operation in both applications. 
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Figure 10 — Operator point of view for indicative tasks (AR application) 
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